

Photoclinometry made simple?

No, not really. Maybe simpler.

Outline

- Photoclinometry: what, why, how?
- ISIS photoclinometry workflow
- Visualization examples
- Summary of new ISIS tools
- Interactive photoclinometry demo

Photoclinometry...

- What: using brightness information in an image or images to infer topography
 - Also known as "shape-from-shading"
- Why: highly complementary to stereo
 - Works with a single image
 - Resolves single-pixel topographic details (vs. 3–5 pixels minimum for stereo)
 - Errors accumulate over horizontal distance
 - Sensitive to assumptions about surface photometry (wants constant reflectivity)

Photoclinometry: How?

Many methods, classified by dimensionality of the region they give topography for

- Zero-dimensional: infer slope at a point from 1 pixel
- One-dimensional: integrate slopes along a line, build up elevation profile

1 known (brightness) <-> 2 unknowns (E-W, N-S slopes)??

Must assume slope direction: toward sun, along profile, or at known angle

 Two-dimensional: make a digital elevation model (DEM) of a region

NB: this is actually a fully 3D model of a 2D surface
1 known (brightness) <-> 1 unknown (elevation)
A lot more data

Totally different mathematical challenges

- A PDE with the image as forcing function
- Least-squares modeling an image
- The inverse problem to hill-shading

Photoclinometry & Stereo

2-Dimensional Photoclinometry

Kirk (1987) algorithm

- Set up finite element model of surface (just a DEM)

 Elements=pixels; unknowns=pixel corner heights
- Set up eqns for least-squares fit to image
- Solve by repeated linearizing (Newton-Raphson)
- Solve linear eqns by successive overrelaxation (SOR)
 - Memory-efficient
 - Iterative
 - Converges local details first, long wavelengths slowly
- Multigridding (work at full, 1/2, 1/4,... resolution) to speed convergence of long wavelengths
- SOR+Multigridding require human supervision
- Supervision is not needed *if*Image is very small (use direct matrix factorization not SOR)
 - Have a priori DEM containing long wavelengths already

Photoclinometry Workflow

- Select image
- Prepare image
- Prepare a priori DEM (optional)
- Estimate photometric parameters
- Estimate image normalization
- Do photoclinometry
- Post-process DEM
- Enjoy!

Image Selection & Preparation

- Select image w/ shading >> albedo variation
 - Incidence angle > 30° but not too large
 - Minimal albedo variations visible to eye
- Perform radiometric calibration (Level 1)
 - Removes sensitivity artifacts
 - OK to convert back to lower bit type after
- Use framing or scanner images in native geometry (nonsquare scanner pixels are OK)
- Map-project if desired (Level 2)
 - Projection must be relatively undistorted
 - Single image, or
 - Mosaic of images with similar illumination—must transfer illumination info to labels with lev1prop

Map Projection for Photoclinometry

Europa Visualized

Albedo Correction in Image Space

Photometric Model Parameters

- Hapke model (5 physical parameters) supported but *slow*
- Minnaert, lunar-Lambert models (1 limb-darkening parameter)
 - Hundreds of times faster
 - Can be fit to Hapke model at given phase α (McEwen 1991)
- pho_emp_global fits empirical to Hapke over whole hemisphere at series of α mainly for mosaicking
- pho_emp_local fits at i,e,α of single image for photoclinometry
- Get Hapke constants from lit. (will summarize in PC documentation)
- Future programs will be useful for direct fitting of empirical models to images

Image Calibration Parameters: Haze and Albedo

Sun is from upper left in all examples

Correct Haze and Albedo

Too much Haze subtracted

Albedo underestimated

Albedo overestimated

Inverse Fitting for Haze: 1D Photoclinometry in Excel

Forward Fitting for Haze

Automation of haze fitting: pc_fit_forward and pc_fit_inverse

Pitfalls of Haze Fitting: Finding well-resolved features

pc2d Graphical User Interface

DEM Post-Processing: "Destriping"

Visualization Examples: Gusev

Visualization Examples: PLT

ISIS PC Tools Release 3/13/03

astrogeology.usgs.gov/Teams/Geomatics/pc.html

Documentation

- Download & install information
- Improved TAE documentation
- Draft Photoclinometry User's Guide

Photoclinometry

- pc2d—Interactive photoclinometry pcsi—Non-interactive photoclinometry
- pcinfo—Memory requirements & other info for pc2d, pcsi

Photometric Normalization

photomet—Improved documentation, consistent parameters

Photometric Fitting

- pho_emp_local—Fit empirical fn to Hapke for mosaicking
- pho_emp_global —Fit empirical fn to Hapke for photoclinometry
- shadow tau —Improved documentation, consistent parameters
- shade_tau—Atmospheric optical depth from global shading
 pc_fit_inverse—Haze fitting by trial photoclinometry (still pending)

Support

- lev1prop—Geometric info to Level 2 labels for photoclinometry
- linfit—Linear regression of an image on 1 or 2 others

